
SKBL – Serial Key Builder Library

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

 

 

Build on Visual Studio 2008 with Visual Basic 

Based on .NET Framework 3.5 

 

Copyright (C) 2009-2012 by Artem Los 

All rights reserved. 

 

 

 

 

 

 

 

OVERVIEW: 

What is SKBL..............................................................2 

Simple Template...........................................................3 

Advance Modular protection................................................4 

Summary...................................................................5 

Adding DLL to project.....................................................6 

Code Example (c#), second part............................................7 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



What is SKBL. 

SKBL is a library (dll) that works similar to the Regex in .NET Framework 

(included by using: System.Text.RegularExpressions). In SKBL you have two 

words that are import in order to understand how the whole library works. 

First of all, there is a TEMPLATE, which’s the pattern all keys should 

follow. With other words, this is the similarity to Regex. The second word 

is a KEY, which’s the output of a template. 

A template might be defined as a rule that keys should follow in order to 

be valid. More information about this on page 2-3. 

 

 

SKBL is so simple that it only requires two functions, creating a key, and 

validating a key. Both this functions require a template. 

 

The SKBL itself might be used to protect a .NET application. It works both 

in Visual Basic, C#, and almost all other .NET based applications. It might 

also be used to generate random strings, numbers, et cetera. If a text 

should follow some rule than SKBL can be used. 

 

HISTORY: 

SKBL was developed by Artem Los 2009. It should be an add-on for Serial Key 

Builder. The design of previous version of Serial Key Builder was similar 

to anther application, so the only place it can be found is in Artem’s 

computer. Then, another design was build, but there is only Alpha version 

available. SKBL is actually end-of-support, no support, or no changes will 

be made in this library. It is as it was 2009. The current perspective of 

CliZ Ware is to release SKGL, Serial Key Generating Library, where you can 

save data directly into a key. This is the first, and the last tutorial 

written for SKBL. The library itself will be available on internet, though. 

If there is some usage of this library, if you find it useful, please send 

a message to me at artem.los@nilssons.ws. I will try to help as much as I 

can, for free! 

 

Good Luck, 

Artem (www.clizware.net) 

 

 

 

 

 

    

 

 

 

 

 

 

 

 

 

 

 

 



   Simple Template 

In SKBL there are symbols that often define something. The table below 

defines each symbol included in SKBL. 

 

Symbol Function 

  #  A random number 

  *   A random uppercase letter 

  @  A random lowercase letter 

  %  A random lowercase or uppercase letter 

  ?  A random number or uppercase letter 

  !  A random number or lowercase letter 

 

 

And here are the outputs of few examples 

 

Template  Output 

 #####   86475 

 *****-@@@@@  MXDNJ-nyeky 

 %%%%%-?????  EHDtw-JQ64B 

 !!!!!   t2p6n 

 REG-#####-@@@@@-***** REG-84210-wfwpd-OTHNB 

 

 

In the table above, all letters/digits are randomly generated. There is a 

way how the frequency of them might be changed. The function is called 

Random To. With this function you might specify the frequency of either 

letters or numbers. [15] is a simple function. It starts with "[", which 

indicates a function for the SKBL. The output of this function will be 

either 1,2,3,4 or 5. Number 1 is where to start and number 5 is where to 

end. This function also works for letters, both uppercase and lowercase. 

[DF] will output either D,E, or F, uppercase. [df] will output the same 

letters, but, in lowercase, which means, d,e,f.  

Below, there is an example. 

 

Template: #####-[13][59][46][79][03]-[DF][QS][MP][AF][TZ]-

[dt][er][os][no][eg] 

Key: 08124-29692-DSPCW-ngsof 

 

If a char is not assigned to do something, it will output as it is, without 

some changes. "[" and "]" are an exception. 

 

 

 

 

 

 

 

 

 

 

 

 

 



   Advance Modular protection 

In SKBL there are two functions that can be used to make a strong template. 

Its name is Rem. The main principle of both of them is that there are 

taking one or two letters/digits in the key, and divides them with another 

letter/digit. It takes the reminder of them after the division and writes 

it down. The result will only be one number. 

 

The first version of the function takes char X and divides it with Y. Note, 

the X stands for the coordinates, position, of the char that will be 

divided, and Y stays for the denominator. 

If there is a template with five random numbers, #####, the output will be 

similar to 32042. If the next part of the key contains [1/7], the template 

might be #####[1/7]. The output is therefore 602885, or 748346, etc. The 

function takes the first char (1) and divides it by 7, and the rest is then 

displayed. To sum up, the formula of this function is [X/Y] 

 

The second version of this function takes two chars and divides them by the 

third one. The formula is [+X,Y/Z]. For example, if the template is 

#####[+1,2/9], the output will be similar to 568732. 

 

NOTE: In both of this functions the X (first function) or X and Y (second 

function) have to be less than their own position. With other words, the 

function cannot use a char that is after it. The SKBL reads the template 

from left to right; therefore it should be less than its own position. 

 

#####-[3/7] or #####-[+2,5/9] are right; #####-[7/5] is wrong. So, the char 

position has to be less than the actual position of function. 

 

NOTE: Either Y (first function) or Z (second function) cannot be greater 

than 10, i.e. function 1: Y<10; function 2: Z<10; It can only be divided 

with {1,2,3,4,5,6,7,8,9} 

 

 

To understand the process is knowledge of ASCII numbers required.   

If the template is #[1/5], the key will look like 31. SKBL takes 3 

(ascii:51) and divides by 5. The rest is therefore 1. An ASCII table might, 

for instance, be found at http://www.asciitable.com/.  

 

It differs from function two. If the template is ##[+1,2/6], the key might 

be 633. SKBL takes the value as it is i.e. 6 and 3, adds them up, and 

divides by 6, and outputs the rest 3. It also works with letters as well. 

The method is based on the previous one, but, contains few changes. 

 

 

 

 

 

 

 

 

 

 

 



   Summary 

This is the summary of p3-4. 

 

DEFINITION: 

Symbol Function 

  #  A random number 

  *   A random uppercase letter 

  @  A random lowercase letter 

  %  A random lowercase or uppercase letter 

  ?  A random number or uppercase letter 

  !  A random number or lowercase letter 

 

 

FUNCTIONS: 

ID     Definition:     Description:          Example:        Note:  

 1      [XY]            Generates a random   [AC] = A,B,C     The Y ASCII          

                        letter/char from X-Y [ac] = a,b,c     value cannot                                

                                             [35] = 3,4,5     be less than 

                                                              X ASCII value 

 

 2      [XY]            Takes char X mod     #[1/7] = 21      X cannot be 

                        number Y             1 is reminder    a char after 

                                             of ascii 50(2)   this function 

                                                               

 3      [+X,Y/Z]        Adds chars X and Y   ##[+1,2/7]=156   X,Y cannot be  

                        Mo number Y.         6 is reminder    a char after 

                                             of 1+5=6         this function 

                                              

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Adding DLL to project 

To use this Dynamic link library in a project, it has to be included as 

Reference. 

In Visual Studio, go to Project>Add reference...>Browse. Enter the path of 

the library and press OK. 

 

There are several ways to generate keys in SKBL (based on one). If only one 

key is to be generated, type: 

Visual Basic  SKBL_Library.SKBL.Create_Key("tempate...") 

 C Sharp(C#)   SKBL_Library.SKBL.Create_Key("tempate..."); 

 

It is strongly recommended that you use a Try Catch in both languages. 

VISUAL BASIC: 

Try 

   TextBox1.Text = SKBL_Library.SKBL.Create_Key("template...")  

Catch ex As Exception 

   MessageBox.Show(ex.Message) 

'Showing a message if template or anything fails.   

End Try 

 

C SHARP (C#): 

try 

{ 

   TextBox1.Text = SKBL_Library.SKBL.Create_Key("template..."); 

} 

catch (Exception e2) 

{ 

   MessageBox.Show(e2.Message);  

   //Showing a message if template or anything fails.  

} 

 

 

Another way shows how to generate more than one key 

VISUAL BASIC: 

Try 

   Dim SplitChar As String = vbCrLf 'Change this variable if you want to 

change the split char between keys 

   Dim Keys As String = "" 

   Dim i As Integer = 0 

   While i < NumericUpDown1.Value 

   i += 1 'Add 1 to "i" 

   Keys = Keys & SKBL_Library.SKBL.Create_Key(TextBox1.Text) 'Here we add 

key to variabel "Keys" 

 

      If i < NumericUpDown1.Value Then 

         Keys = Keys & SplitChar 

      End If 

   End While 

   MessageBox.Show(Keys) 'Show all keys in a message 

Catch ex As Exception 

   MessageBox.Show(ex.Message) 'Show a message if template or anything is 

corrupt  

End Try 



C SHARP (C#): 

try 

{ 

   String SplitChar = Environment.NewLine; //Change this variable if you 

want to change the split char between keys 

   String Keys=""; 

   int i=0; 

   while (i < NumericUpDown1.Value) 

   { 

      i++; //Add 1 to "i" 

      Keys = Keys + SKBL_Library.SKBL.Create_Key(TextBox1.Text); //Here we 

add key to variabel "Keys" 

 

      if (i < NumericUpDown1.Value) 

      { 

         Keys = Keys + SplitChar; 

      } 

   } 

   MessageBox.Show(Keys); //Show all keys in a message 

} 

catch (Exception e2) 

{ 

   MessageBox.Show(e2.Message); //Show a message if template or anything is 

corrupt  

} 


